Abstract
Non-extensive statistical mechanics (NESM), introduced by Tsallis based on the principle of non-additive entropy, is a generalisation of the Boltzmann–Gibbs statistics. NESM has been shown to provide the necessary theoretical and analytical implementation for studying complex systems such as the fracture mechanisms and crack evolution processes that occur in mechanically loaded specimens of brittle materials. In the current work, acoustic emission (AE) data recorded when marble and cement mortar specimens were subjected to three distinct loading protocols until fracture, are discussed in the context of NESM. The NESM analysis showed that the cumulative distribution functions of the AE interevent times (i.e., the time interval between successive AE hits) follow a q-exponential function. For each examined specimen, the corresponding Tsallis entropic q-indices and the parameters βq and were calculated. The entropic index shows a systematic behaviour strongly related to the various stages of the implemented loading protocols for all the examined specimens. Results seem to support the idea of using the entropic index as a potential pre-failure indicator for the impending catastrophic fracture of the mechanically loaded specimens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.