Abstract

We use quasiparticle anisotropic hydrodynamics to study the non-conformal and non-extensive dynamics of a system undergoing boost-invariant Bjorken expansion. To introduce nonextensivity, we use an underlying Tsallis distribution with a time-dependent nonextensivity parameter q. By taking moments of the quasiparticle Boltzmann equation in the relaxation-time approximation, we obtain dynamical equations which allow us to determine the time evolution of all microscopic parameters including q. We compare numerical solutions for bulk observables obtained using the nonextensive evolution with results obtained using quasiparticle anisotropic hydrodynamics with a Boltzmann distribution function (q rightarrow 1). We show that the evolution of the temperature, pressure ratio, and scaled energy density, are quite insensitive to which distribution function is assumed. However, we find significant differences in the early-time evolution of the bulk pressure which are observed for even small deviations from the Boltzmann distribution function. Finally, we discuss the existence of non-conformal hydrodynamic attractors for the longitudinal and transverse pressures, the bulk and shear viscous corrections, and the nonextensivity parameter q.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call