Abstract
We study a class of branching processes in which a population consists of immortal individuals equipped with a fitness value. Individuals produce offspring with a rate given by their fitness, and offspring may either belong to the same family, sharing the fitness of their parent, or be founders of new families, with a fitness sampled from a fitness distribution $\mu$. Examples that can be embedded in this class are stochastic house-of-cards models, urn models with reinforcement and the preferential attachment tree of Bianconi and Barabasi. Our focus is on the case when the fitness distribution $\mu$ has bounded support and regularly varying tail at the essential supremum. In this case, there exists a condensation phase, in which asymptotically a proportion of mass in the empirical fitness distribution of the overall population condenses in the maximal fitness value. Our main results describe the asymptotic behaviour of the size and fitness of the largest family at a given time. In particular, we show that as time goes to infinity the size of the largest family is always negligible compared to the overall population size. This implies that condensation, when it arises, is nonextensive and emerges as a collective effort of several families none of which can create a condensate on its own. Our result disproves claims made in the physics literature in the context of preferential attachment trees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.