Abstract

For semilinear partial differential equations of mixed elliptic-hyperbolic type with various boundary conditions, the nonexistence of nontrivial solutions is shown for domains which are suitably star-shaped and for nonlinearities with supercritical growth in a suitable sense. The results follow from integral identities of Pohožaev type which are suitably calibrated to an invariance with respect to anisotropic dilations in the linear part of the equation. For the Dirichlet problem, in which the boundary condition is placed on the entire boundary, the technique is completely analogous to the classical elliptic case as first developed by Pohožaev [34] in the supercritical case. At critical growth, the nonexistence principle is established by combining the dilation identity with another energy identity. For “open” boundary value problems in which the boundary condition is placed on a proper subset of the boundary, sharp Hardy-Sobolev inequalities are used to control terms in the integral identity corresponding to the lack of a boundary condition as was first done in [23] for certain two dimensional problems.KeywordsWeak SolutionDirichlet ProblemCritical GrowthOpen Boundary ConditionMultiplier IdentityThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.