Abstract
The quotient of a Hermitian symmetric space of non-compact type by a torsion-free cocompact arithmetic subgroup of the identity component of the group of isometries of the symmetric space is called an arithmetic fake compact Hermitian symmetric space if it has the same Betti numbers as the compact dual of the Hermitian symmetric space. This is a natural generalization of the notion of “fake projective planes” to higher dimensions. Study of arithmetic fake compact Hermitian symmetric spaces of type An with even n has been completed in [PY1], [PY2]. The results of this paper, combined with those of [PY2], imply that there does not exist any arithmetic fake compact Hermitian symmetric space of type other than An, n ≤ 4 (see Theorems 1 and 2 in the Introduction below and Theorem 2 of [PY2]). The proof involves the volume formula given in [P], the Bruhat-Tits theory of reductive p-adic groups, and delicate estimates of various number theoretic invariants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.