Abstract

We study anti-symmetric solutions about the hyperplane $\{x_n=0\}$ for the following fractional Hardy–Hénon system: \[ \left\{\begin{array}{@{}ll} (-\Delta)^{s_1}u(x)=|x|^\alpha v^p(x), & x\in\mathbb{R}_+^n, \\ (-\Delta)^{s_2}v(x)=|x|^\beta u^q(x), & x\in\mathbb{R}_+^n, \\ u(x)\geq 0, & v(x)\geq 0,\ x\in\mathbb{R}_+^n, \end{array}\right. \]where $0< s_1,s_2<1$, $n>2\max \{s_1,s_2\}$. Nonexistence of anti-symmetric solutions are obtained in some appropriate domains of $(p,q)$ under some corresponding assumptions of $\alpha,\beta$ via the methods of moving spheres and moving planes. Particularly, for the case $s_1=s_2$, one of our results shows that one domain of $(p,q)$, where nonexistence of anti-symmetric solutions with appropriate decay conditions at infinity hold true, locates at above the fractional Sobolev's hyperbola under appropriate condition of $\alpha, \beta$.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call