Abstract

The n-6 and n-3 fatty acid status of developing organs is the cumulative result of the diet lipid composition and many complex events of lipid metabolism. Little information is available, however, on the potential effects of the saturated fatty acid chain length (8:0-16:0) or oleic acid (18:1) content of the diet on the subsequent metabolism of the essential fatty acids 18:2n-6 and 18:3n-3 and their elongated/desaturated products. The effects of feeding piglets formulas with fat blends containing either coconut oil (12:0 + 14:0) or medium chain triglycerides (MCT, 8:0 + 10:0) but similar levels of 18:1, 18:2n-6 and 18:3n-3, or MCT with high or low 18:1 but constant 18:2n-6 and 18:3n-3 on the fatty acid composition of plasma, liver and kidney triglycerides, phospholipids and cholesteryl esters, and of brain total lipid, were studied. Diet-induced changes in the fatty acid composition of lipid classes were generally similar for plasma, liver and kidney. Dietary 18:1 content was reflected in tissue lipids and was inversely associated with levels of 18:2n-6. Lower percentage of 18:2n-6, however, was not associated with lower levels of its elongated/desaturated product 20:4n-6 but was associated with higher levels of 22:6n-3. Feeding coconut oil vs. MCT resulted in lower 18:1 levels in all lipids, and higher percentages of 20:4n-6 in tissue phospholipid. Increasing the dietary n-6/n-3 ratio from 5 to 8 significantly increased tissue percentage of 18:2n-6 and decreased phospholipid 22:6n-3.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call