Abstract

Phosphatidylinositol-specific phospholipase C (PI-PLC) from Bacillus thuringiensis is an allosteric enzyme with both a phospholipid activator site and an active site. The activation of PI-PLC enzyme is optimal with phosphatidylcholine (PC) binding to the activator site and anchoring the enzyme to the interface [Zhou, C., et al. (1997) Biochemistry 36, 347-355; Zhou, C., et al. (1997) Biochemistry 36, 10089-10091]. In contrast to PC, anionic short-chain phospholipids with smaller headgroups [phosphatidylmethanol (PMe) and phosphatidic acid (PA)] as well as phosphatidylglycerol (PG) can bind to both sites playing dual roles: nonessential activation and competitive inhibition of cyclic-(1, 2)-inositol phosphate hydrolysis. PG is also a substrate, albeit a poor one, for PI-PLC, and is cleaved slowly to form alpha-glycerol phosphate. Analysis of enzyme kinetics using cIP as the substrate coupled with effects of different short-chain phospholipids on enzyme intrinsic fluorescence indicates that anionic phospholipids with small headgroups bind to the two sites with different affinities. If no interface is present, all dihexanoylphospholipids bind to the activator site more strongly than to the active site. When the activator site is occupied, it is likely that the enzyme undergoes a conformational change that allows phospholipids to bind easily to the active site. Such behavior is consistent with the observation that enzyme activation is detected at low short-chain anionic phospholipid concentrations with inhibition observed at higher concentrations, and that only inhibition is seen with these phospholipids added as monomers in the presence of a PC interface that optimally activates the PI-PLC. A kinetic model is used to extract the affinity of short-chain lipids for the active site from experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call