Abstract

We review the dynamics of interacting particles in disorder-free potentials concentrating on a combination of a harmonic binding with a constant tilt. We show that a simple picture of an effective local tilt describes a variety of cases. Our examples include spinless fermions (as modeled by Heisenberg spin chain in a magnetic field), spinful fermions as well as bosons that enjoy a larger local on-site Hilbert space. We also discuss the domain-wall dynamics that reveals nonergodic features even for a relatively weak tilt as suggested by Doggen et al. (2020). By adding a harmonic potential on top of the static field we confirm that the surprising regular dynamics is not entirely due to Hilbert space shuttering. It seems better explained by the inhibited transport within the domains of identically oriented spins. Once the spin-1/2 restrictions are lifted as, e.g., for bosons, the dynamics involve stronger entanglement generation. Again for domain wall melting, the effect of the harmonic potential is shown to lead mainly to an effective local tilt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.