Abstract

It was pointed out by Eliashberg in his ICM 2006 plenary talk that the integrable systems of rational Gromov-Witten theory very naturally appear in the rich algebraic formalism of symplectic field theory (SFT). Carefully generalizing the definition of gravitational descendants from Gromov-Witten theory to SFT, one can assign to every contact manifold a Hamiltonian system with symmetries on SFT homology and the question of its integrability arises. While we have shown how the well-known string, dilaton and divisor equations translate from Gromov-Witten theory to SFT, the next step is to show how genus-zero topological recursion translates to SFT. Compatible with the example of SFT of closed geodesics, it turns out that the corresponding localization theorem requires a non-equivariant version of SFT, which is generated by parameterized instead of unparameterized closed Reeb orbits. Since this non-equivariant version is so far only defined for cylindrical contact homology, we restrict ourselves to this special case. As an important result we show that, as in rational Gromov-Witten theory, all descendant invariants can be computed from primary invariants, i.e., without descendants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.