Abstract

The development of various thermal analysis techniques over the past several decades has had a profound effect in accelerating the use of thermodynamic, kinetic and pseudo thermodynamic measurements in the analysis and characterization of materials. All of these methods have in common the use of very small samples and a means of causing the temperature to change linearly with time. The measured quantity can be weight loss (TGA), a mechanical quantity (TMA) or a comparison between the behavior of two specimens (DTA) which, when properly calibrated, yields thermodynamic quantities that compare favorably with older, more conventional calorimetric techniques. Since the measurement time and equipment costs for scanning calorimetry (DSC) are orders of magnitude lower, the DSC has essentially replaced the conventional adiabatic calorimeter and finds a place in nearly every modern analytical laboratory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.