Abstract

The influence of partitioning temperature on carbon partitioning during the quench and partition (Q&P) cycle and the associated non-equilibrium phase transformation thermodynamics have been investigated. Lower partitioning temperatures are reported to result in higher carbon partitioning with varying austenite phase fraction. Thermodynamic simulations considering para-equilibrium conditions with an added temperature-dependent effective stored energy contribution have been shown to reasonably predict the retained austenite carbon content. The developed models have been validated with new alloy compositions, QP cycles and data from existing literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.