Abstract
Limits of classical constitutive laws such as Fourier and Navier–Stokes equations are discovered since decades. However, the proper extensions—generalizations of these—are not unique. They differ in the underlying physical principles and in modeling capabilities. In this paper, two different theories are discussed and compared to each other, namely the kinetic theory-based rational extended thermodynamics (RET) and non-equilibrium thermodynamics with internal variables (NET-IV). First, the paper starts with the case of rigid heat conductors summarizing the result achieved so far. Then, a typical example of compressible bodies is shown by presenting the first generalization for rarefied gases, called Meixner’s theory. It is further extended using generalized entropy current in the framework of NET-IV. It is shown how its structure is related to RET and how the compatibility between them can be acquired.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.