Abstract

Q-carbon is a densely packed metastable phase of carbon formed by ultrafast quenching of carbon melt in a super-undercooled state. After quenching, diamond tetrahedra are randomly packed with >80% packing efficiency. This discovery has opened a pathway to fabricate various interesting heterostructures following the highly nonequilibrium route of nanosecond pulsed laser annealing. In the present work, we demonstrate the evolution of Q-carbon/α-carbon and Q-carbon/diamond heterostructures with atomically sharp interfaces, controlled via varying solidification rates of the undercooled C melt. This structure consists of ultrahard Q-carbon (∼80% sp3 and rest sp2) with an overlayer of soft α-carbon (∼40% sp3) on the inert c-Al2O3 substrate. Using high-resolution scanning transmission electron microscopy and Raman spectroscopy analysis, we present the formation of the highly dense Q-carbon/α-carbon bilayer structure with distinctly different atomic and electronic structures. The laser-solid interaction simulations coupled with atomistic ab initio modeling further confirm the conversion of C melt into Q-carbon by achieving maximum undercooling near the substrate and further into α-carbon with a decrease in regrowth velocity (<6 m/s) away from the substrate. We present details of the evolution of heterointerfaces formed from carbon melt for designing heterostructures far from equilibrium for various functional applications by using pulsed laser processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.