Abstract

Under certain conditions we prove the existence of a steady-state transport regime for interacting mesoscopic systems coupled to reservoirs (leads). The partitioning and partition-free scenarios are treated on an equal footing. Our time-dependent scattering approach is {\it exact} and proves, among other things the independence of the steady-state quantities from the initial state of the sample. Closed formulas for the steady-state current amenable for perturbative calculations w.r.t. the interaction strength are also derived. In the partitioning case we calculate the first order correction and recover the mean-field (Hartree-Fock) results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.