Abstract

We study the full nonequilibrium steady-state distribution P_{st}(X) of the position X of a damped particle confined in a harmonic trapping potential and experiencing active noise whose correlation time τ_{c} is assumed to be very short. Typical fluctuations of X are governed by a Boltzmann distribution with an effective temperature that is found by approximating the noise as white Gaussian thermal noise. However, large deviations of X are described by a non-Boltzmann steady-state distribution. We find that, in the limit τ_{c}→0, they display the scaling behavior P_{st}(X)∼e^{-s(X)/τ_{c}}, where s(X) is the large-deviation function. We obtain an expression for s(X) for a general active noise and calculate it exactly for the particular case of telegraphic (dichotomous) noise.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call