Abstract

Grain refinement phenomena during the microstructural evolution upon nonequilibrium solidification of deeply undercooled Ni-20 at. pct Cu melts were systematically investigated. The dendrite growth in the bulk undercooled melts was captured by a high-speed camera. The first kind of grain refinement occurring in the low undercooling regimes was explained by a current grain refinement model. Besides, for the dendrite melting mechanism, the stress originating from the solidification contraction and thermal strain in the FMZ during rapid solidification could be a main mechanism causing the second kind of grain refinement above the critical undercooling. This internal stress led to the distortion and breakup of the primary dendrites and was semiquantitatively described by a corrected stress accumulation model. It was found that the stress-induced recrystallization could make the primary microstructures refine substantially after recalescence. A new method, i.e., rapidly quenching the deeply undercooled alloy melts before recalescence, was developed in the present work to produce crystalline alloys, which were still in the cold-worked state and, thus, had the driven force for recrystallization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call