Abstract
Shock layer temperature profiles are obtained through analysis of radiation from shock layers produced by a blunt body inserted in arc jet flow. Spectral measurements have been made in a nitrogen flow of 54.4 gm/s at an enthalpy of 8.72 MJ/kg. Vibrational temperatures for N2+ are obtained by matching spectral regions from arc jet spectra with spectra generated using the NEQAIR code. Temperature profiles obtained from the radiation layers show a vibrational temperature higher than the rotational temperature near the front of the shock and both temperatures decrease as the flow approaches the body. The spectral measurements are made and analysis completed for four distances, from the surface of the blunt body. The corresponding shock layer thickness is approximately 3.6 cm. Although the shock layer appears to be in thermal nonequilibrium, the measured rotational temperature approaches the single temperature results of viscous shock layer calculations at this test condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.