Abstract
The study of chemical reactions in environments under nonequilibrium conditions has been of interest recently in a variety of contexts, including current-induced reactions in molecular junctions and scanning tunneling microscopy experiments. In this work, we outline a fully quantum mechanical, numerically exact approach to describe chemical reaction rates in such nonequilibrium situations. The approach is based on an extension of the flux correlation function formalism to nonequilibrium conditions and uses a mixed real and imaginary time hierarchical equations of motion approach for the calculation of rate constants. As a specific example, we investigate current-induced intramolecular proton transfer reactions in a molecular junction for different applied bias voltages and molecule-lead coupling strengths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.