Abstract
The problem of the radiation gas dynamics of super-orbital entry into dense layers of the Earth’s atmosphere of the command module of Apollo 4 is solved numerically in the two-dimensional formulation of the flow around an aerodynamic frontal shield at the velocity V∞= 10.7 km/s in the altitude range H = 91.5‒76.2 km. The density distributions of the spectral and integral radiation heat fluxes on the surface flowed around are obtained. The considerable role of atomic spectral lines in the radiation heating of the surface is shown. The results of calculations are compared with the flight experimental data and the calculated data of other authors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.