Abstract

We employ a novel, unbiased renormalization-group approach to investigate nonequilibrium phase transitions in infinite lattice models. This allows us to address the delicate interplay of fluctuations and ordering tendencies in low dimensions out of equilibrium. We study a prototypical model for the metal to insulator transition of spinless interacting fermions coupled to electronic baths and driven out of equilibrium by a longitudinal static electric field. The closed system features a Berezinskii-Kosterlitz-Thouless transition between a metallic and a charge-ordered phase in the equilibrium limit. We compute the nonequilibrium phase diagram and illustrate a highly nonmonotonic dependence of the phase boundary on the strength of the electric field: for small fields, the induced currents destroy the charge order, while at higher electric fields it reemerges due to many-body Wannier-Stark localization physics. Finally, we show that the current in such an interacting nonequilibrium system can counter-intuitively flow opposite to the direction of the electric field. This nonequilibrium steady state is reminiscent of an equilibrium distribution function with an effective negative temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.