Abstract

The concentrations of electron-excited particles have been determined by measuring the absolute spectral irradiance in the range of 600 — 800 nm of O2 — O2(1Δ) — H2O gas mixture at the output of a chemical singlet-oxygen generator (SOG). A nonequilibrium population of the first vibrational level of O2(1Σ) molecules has been clearly observed and found to depend on the water vapour content. In correspondence with the results of these measurements and according to the analysis of kinetics processes in the O2 — O2(1Δ) — H2O mixture, the maximum number of vibrational quanta generated in the O2(1Δ) + O2(1Δ) → O2(1Σ) + O2(3Σ) reaction is 0.05 ± 0.03. It is concluded that the vibrational population of O2(1Δ) at the output of the SOG used in a chemical oxygen—iodine laser is close to thermal equilibrium value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.