Abstract
Reliable and stable ignition under lean conditions is essential for safe operation of the engine. Nanosecond pulsed discharge non-equilibrium plasma assisted ignition characteristics of premixed ethylene-air flow in an advective combustion chamber were investigated. The effects of the equivalence ratio, discharge gap distance, flow velocity, discharge frequency or inter-pulse time, and pulse number were quantified in terms of ignition probability. Shadow images of ignition kernel development were captured and used to extracted the averaged kernel projected area. The results indicated that increasing the equivalence ratio, a higher flow velocity, a wider discharge gap distance, and a larger number of pulses are all conducive to the increasing of ignition probability via inducing a larger initial kernel. Increasing inter-pulse time has a non-monotonic effect on ignition probability for multiple nanosecond pulsed discharges ignition. As the inter-pulse time decreases, when neighboring kernel boundaries happen to overlap each other, the partially-coupled regime shows a higher ignition probability. Longer or shorter inter-pulse time both cause the decrease in ignition probability. The shortest inter-pulse time shown as the fully-coupled regime is the most favorable for ignition with the highest ignition probability. A method is proposed to estimate the critical frequency at which partially-coupled regime transitions to fully-coupled regime by 95% of the asymptotic time of flame development time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.