Abstract
We introduce a generalized Hamiltonian mean field model-an XY model with both linear and quadratic coupling between spins and explicit Hamiltonian dynamics. In addition to the usual paramagnetic and ferromagnetic phases, this model also possesses a nematic phase. The generalized Hamiltonian mean field model can be solved explicitly using Boltzmann-Gibbs statistical mechanics, in both canonical and microcanonical ensembles. However, when the resulting microcanonical phase diagram is compared with the one obtained using molecular dynamics simulations, it is found that the two are very different. We will present a dynamical theory which allows us to explicitly calculate the phase diagram obtained using molecular dynamics simulations without any adjustable parameters. The model illustrates the fundamental role played by dynamics as well the inadequacy of Boltzmann-Gibbs statistics for systems with long-range forces in the thermodynamic limit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.