Abstract

Development of thermodynamic induction up to second order gives a dynamical bifurcation for thermodynamic variables and allows for the prediction and detailed explanation of nonequilibrium phase transitions with associated spontaneous symmetry breaking. By taking into account nonequilibrium fluctuations, long-range order is analyzed for possible pattern formation. Consolidation of results up to second order produces thermodynamic potentials that are maximized by stationary states of the system of interest. These potentials differ from the traditional thermodynamic potentials. In particular a generalized entropy is formulated for the system of interest which becomes the traditional entropy when thermodynamic equilibrium is restored. This generalized entropy is maximized by stationary states under nonequilibrium conditions where the standard entropy for the system of interest is not maximized. These nonequilibrium concepts are incorporated into traditional thermodynamics, such as a revised thermodynamic identity and a revised canonical distribution. Detailed analysis shows that the second law of thermodynamics is never violated even during any pattern formation, thus solving the entropic-coupling problem. Examples discussed include pattern formation during phase front propagation under nonequilibrium conditions and the formation of Turing patterns. The predictions of second-order thermodynamic induction are consistent with both observational data in the literature as well as the modeling of this data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.