Abstract

Materials processing using high power pulsed lasers involves complex phenomena including rapid heating, superheating of the laser-melted material, rapid nucleation, and phase explosion. With a heating rate on the order of 109K/s or higher, the surface layer melted by laser irradiation can reach a temperature higher than the normal boiling point. On the other hand, the vapor pressure does not build up as fast and thus falls below the saturation pressure at the surface temperature, resulting in a superheated, metastable state. As the temperature of the melt approaches the thermodynamic critical point, the liquid undergoes a phase explosion that turns the melt into a mixture of liquid and vapor. This article describes heat transfer and phase change phenomena during nanosecond pulsed laser ablation of a metal, with an emphasis on phase explosion and non-equilibrium phase change. The time required for nucleation in a superheated liquid, which determines the time needed for phase explosion to occur, is also investigated from both theoretical and experimental viewpoints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call