Abstract

We perform a perturbative analysis for the nonequilibrium Green functions of the spinless Falicov-Kimball model in the presence of an arbitrary external time-dependent but spatially uniform electric field. The conduction electron self-energy is found from a strictly truncated second-order perturbative expansion in the local electron-electron repulsion U. We examine the current at half-filling, and compare to both the semiclassical Boltzmann equation and exact numerical solutions for the contour-ordered Green functions from a transient-response formalism (in infinite dimensions) on the Kadanoff-Baym-Keldysh contour. We find a strictly truncated perturbation theory in the two-time formalism cannot reach the long-time limit of the steady state; instead it illustrates pathological behavior for times larger than approximately 2/U.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.