Abstract

Real-time perturbation theory is formulated for complex scalar fields away from thermal equilibrium in such a way that dissipative effects arising from the absorptive parts of loop diagrams are approximately resummed into the unperturbed propagators. Low order calculations of physical quantities then involve quasiparticle occupation numbers which evolve with the changing state of the field system, in contrast to standard perturbation theory, where these occupation numbers are frozen at their initial values. The evolution equation of the occupation numbers can be cast approximately in the form of a Boltzmann equation. Particular attention is given to the effects of a non-zero chemical potential, and it is found that the thermal masses and decay widths of quasiparticle modes are different for particles and antiparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.