Abstract

A theory to describe nonequilibrium electronic surface crossing during vibrational relaxation induced by ultrafast photoexcitation is developed and applied to the primary electron transfer (ET) in bacterial photosynthetic reaction centers. As a key concept, we define on a microscopic basis the angle between two reaction coordinates each representing the environmental nuclear displacements coupled to the initial photoexcitation (to the P* state) and to the subsequent ET processes, respectively. The “cross-spectral” density function, whose integral intensity gives the cosine of this angle, is also defined to give a consistent (nonphenomenological) description of the vibrational coherence and its dephasing. In the application to the primary ET in bacterial photosynthesis, we find (1) the time-dependent ET rate exhibits marked oscillation at low temperatures due to the nonequilibrium vibrational coherence in the P* state. However, it does not contribute very much to accelerate the primary ET rate with respect...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.