Abstract

Simultaneous control of structural and physical properties via applied electrical current poses a key, new research topic and technological significance. Studying the spin-orbit-coupled antiferromagnet Ca2RuO4, with 3% Mn doping to weaken the violent first-order transition at 357 K for more robust measurements, we find that a small applied electrical current couples to the lattice by significantly reducing its orthorhombicity and octahedral rotations, concurrently diminishing the 125 K- antiferromagnetic transition and inducing a new, orbital order below 80 K. Our effort to establish a phase diagram reveals a critical regime near a current density of 0.15 A/cm2 that separates the vanishing antiferromagnetic order and the new orbital order. Further increasing current density (> 1 A/cm2) enhances competitions between relevant interactions in a metastable manner, leading to a peculiar glassy behavior above 80 K. The coupling between the lattice and nonequilibrium driven current is interpreted theoretically in terms of t2g orbital occupancies. The current-controlled lattice is the driving force of the observed novel phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.