Abstract
The Ising model on all Archimedean lattices exhibits spontaneous ordering. Three examples of these lattices, namely triangular ([Formula: see text]), honeycomb [Formula: see text] and Kagome [Formula: see text] lattices, are considered to study the kinetic continuous opinion dynamics model (KCOD) through extensive Monte Carlo simulations. The order/disorder phase transition is observed in all lattices for the KCOD. The estimated values of the critical disorder parameter are [Formula: see text], [Formula: see text], and [Formula: see text] for [Formula: see text], [Formula: see text] and [Formula: see text] lattices, respectively. The critical exponents [Formula: see text], [Formula: see text] and [Formula: see text] for the model are [Formula: see text], [Formula: see text], and [Formula: see text]; [Formula: see text], [Formula: see text], and [Formula: see text]; [Formula: see text], [Formula: see text], and [Formula: see text], for [Formula: see text], [Formula: see text] and [Formula: see text] lattices, respectively. These results agree with the majority-vote model on ([Formula: see text]), ([Formula: see text]), and [Formula: see text] lattices but are different from KCOD model results on square lattices [Formula: see text].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.