Abstract
Abstract On (4, 6, 12) and (4, 82) Archimedean lattices, the critical properties of the majority-vote model are considered and studied using the Glauber transition rate proposed by Kwak et al. [Kwak et al., Phys. Rev. E, 75, 061110 (2007)] rather than the traditional majority-vote with noise [Oliveira, J. Stat. Phys. 66, 273 (1992)]. We obtain T c and the critical exponents for this Glauber rate from extensive Monte Carlo studies and finite size scaling. The calculated values of the critical temperatures and Binder cumulant are T c = 0.651(3) and U 4* = 0.612(5), and T c = 0.667(2) and U 4* = 0.613(5), for (4, 6, 12) and (4, 82) lattices respectively, while the exponent (ratios) β/ν, γ/ν and 1/ν are respectively: 0.105(8), 1.48(11) and 1.16(5) for (4, 6, 12); and 0.113(2), 1.60(4) and 0.84(6) for (4, 82) lattices. The usual Ising model and the majority-vote model on previously studied regular lattices or complex networks differ from our new results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.