Abstract

We present a statistical physics framework for the description of nonlinear nonequilibrium stochastic processes, modeled via a chemical master equation, in the weak-noise limit. Using the Poisson-representation approach and applying the large-deviation principle, we first solve the master equation. Then we use the notion of the nonequilibrium free energy to derive an integral fluctuation relation for nonlinear nonequilibrium systems under feedback control. We point out that the free energy as well as some functionals can serve as a nonequilibrium Lyapunov function which has an important property to decay monotonously to its minimal value at all times. The Poisson-representation technique is illustrated via exact stochastic treatment of biophysical processes, such as bacterial chemosensing and molecular evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.