Abstract

We review the results of experimental and theoretical studies of the properties of a nonequilibrium plasma produced from volume-structured media, containing micro- and nano-size internal elements, under laser-pulse irradiation. We consider two types of materials, i.e., regularly and stochastically structured materials. The first type is either a set of flat layers or cylindrical and spherical shells of micrometer thickness, and the second type is either foams of light elements or light foams containing clusters of heavy elements with dimensions in the range of 10–100 nm. We study the properties of high-temperature laser-produced plasmas of such materials and applications directed to developing the design of inertial confinement fusion (ICF) targets and creating powerful sources of thermonuclear neutron and soft X-ray emission initiated by the laser pulse. The foam materials can be used as absorbers capable of providing homogeneity of laser-energy absorption by the target. A neutron yield up to 1014−1015 DT neutrons per shot can be achieved by heating regularly structured materials using a laser pulse in the regime of the consequent thermal explosions of solid elements containing isotopes of hydrogen. Laser-radiation conversion into soft X-ray emission with the efficiency controlled in a wide range may be realized in laser-produced plasmas of porous media doped with clusters of heavy elements. In particular, such a material can be used as an absorber–converter of laser radiation in inertial confinement fusion targets. Under direct irradiation of an ICF target by a laser pulse, such a converter can provide transformation of 20–30% of the absorbed laser energy into the energy of X-ray radiation transferred to thermonuclear capsules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.