Abstract

Nonequilibrium kinetic Ising models evolving under the competing effect of spin flips at zero temperature and Kawasaki-type spin-exchange kinetics at infinite temperature T are investigated here in one dimension from the point of view of phase transition and critical behaviour. Branching annihilating random walks with an even number of offspring (on the part of the ferromagnetic domain boundaries), is a decisive process in forming the steady state of the system for a range of parameters, in the family of models considered. A wide variety of quantities characterize the critical behaviour of the system. Results of computer simulations and of a generalized mean field theory are presented and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.