Abstract

It is well known [1] that nonequilibrium physicochemical processes taking place in gases at high temperature influence the gas-dynamic parameters and aerodynamic characteristics of bodies in hypersonic flight. In the present paper, the thin shock layer method [2–4] is used to consider the problem of nonequilibrium hypersonic flow of gas past a wing of small aspect ratio at an angle of attack. It is shown that the flow component of the vorticity is conserved along the streamlines, and this property is exploited to obtain an analytic solution of the equations of the three-dimensional nonequilibrium shock layer. The influence of the disequilibrium on the thickness of the shock layer and the pressure distribution is investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.