Abstract
We apply memory function formalism to investigate nonequilibrium electron relaxation in graphene. Within the premises of two-temperature model (TTM), explicit expressions of the imaginary part of the memory function or generalized Drude scattering rate (1/[Formula: see text]) are obtained. In the DC limit and in equilibrium case where electron temperature (Te) is equal to phonon temperature (T), we reproduce the known results (i.e., 1/[Formula: see text][Formula: see text]T4 when T[Formula: see text][Formula: see text] and 1/[Formula: see text][Formula: see text]T when T[Formula: see text][Formula: see text], where [Formula: see text] is the Bloch–Grüneisen temperature). We report several new results for 1/[Formula: see text] where T[Formula: see text][Formula: see text][Formula: see text]Te relevant in pump–probe spectroscopic experiments. In the finite-frequency regime we find that 1/[Formula: see text] when [Formula: see text], and for [Formula: see text] it is [Formula: see text]-independent. These results can be verified in a typical pump–probe experimental setting for graphene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.