Abstract
Accurate models of electrochemical kinetics at electrode-electrolyte interfaces are crucial to understanding the high-rate behavior of energy storage devices. Phase transformation of electrodes is typically treated under equilibrium thermodynamic conditions, while realistic operation is at finite rates. Analyzing phase transformations under nonequilibrium conditions requires integrating nonlinear electrochemical kinetic models with thermodynamic models. This had only previously been demonstrated for Butler-Volmer kinetics, where it can be done analytically. In this work, we develop a software package capable of the efficient numerical inversion of rate relationships for general kinetic models. We demonstrate building nonequilibrium phase maps, including for models such as Marcus-Hush-Chidsey that require computation of an integral, and also discuss the impact of a variety of assumptions and model parameters, particularly on high-rate phase behavior. Even for a fixed set of parameters, the magnitude of the critical current can vary by more than a factor of 2 among kinetic models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.