Abstract

We present a regularized and renormalized version of the one-loop nonlinear relaxation equations that determine the non-equilibrium time evolution of a classical (constant) field coupled to its quantum fluctuations. We obtain a computational method in which the evaluation of divergent fluctuation integrals and the evaluation of the exact finite parts are cleanly separated so as to allow for a wide freedom in the choice of regularization and renormalization schemes. We use dimensional regularization here. Within the same formalism we analyze also the regularization and renormalization of the energy-momentum tensor. The energy density serves to monitor the reliability of our numerical computation. The method is applied to the simple case of a scalar phi^4 theory; the results are similar to the ones found previously by other groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.