Abstract
Colloids immersed in a critical binary liquid mixture are subject to critical Casimir forces (CCFs) because they confine its concentration fluctuations and influence the latter via effective surface fields. To date, CCFs have been primarily studied in thermodynamic equilibrium. However, due to the critical slowing down, the order parameter around a particle can easily be perturbed by any motion of the colloid or by solvent flow. This leads to significant but largely unexplored changes in the CCF. Here we study the drag force on a single colloidal particle moving in a near-critical fluid mixture and the relative motion of two colloids due to the CCF acting on them. In order to account for the kinetic couplings among the order parameter field, the solvent velocity field, and the particle motion, we use a fluid particle dynamics method. These studies extend the understanding of CCFs from thermal equilibrium to nonequilibrium processes, which are relevant to current experiments, and show the emergence of significant effects near the critical point.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.