Abstract
A highly sensitive electrochemical sensor is described for the determination of H2O2. It is based on based on the use of polyaniline that was generated in-situ and within 1min on a glassy carbon electrode (GCE) with the aid of the Fe(II)/H2O2 system. Initially, a 2-dimensional composite was prepared from graphene oxide and polyamidoamine dendrimer through covalent interaction. It was employed as a carrier for Fe(II) ions. Then, the nanocomposite was drop-coated onto the surface of the GCE. When exposed to H2O2, the Fe(II) on the GCE is converted to Fe(III), and free hydroxy radicals are formed. The Fe(III) ions and the hydroxy radicals catalyze the oxidation of aniline to produce electroactive polyaniline on the GCE. The resulting sensor, best operated at a working potential as low as 50mV (vs. SCE) which excludes interference by dissolved oxygen, has a linear response in the 500nM to 2mM H2O2 concentration range, and the detection limit is 180nM. The sensor was successfully applied to the determination of H2O2 in spiked milk and fetal bovine serum samples. Graphical abstract Schematic presentation of a sensitive electrochemical sensor employed for detection of H2O2 in sophisticated matrices by using graphene oxide-PAMAM dendrimer as initiator container and Fe2+/H2O2 system as signal enhancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.