Abstract

AbstractA dopamine (DA) biosensor was developed based on polypyrrole/tannin/cetyltrimethylammonium bromide (PPy/TA/CTAB) nanocomposite and central composite rotatable design (CCRD) was employed for the optimization of conditions. Chemical polymerization of the PPy/TA in the presence of a cationic surfactant, CTAB, reduced the particle size of composite and a rod‐like structure with a lumpy surface and high porosity was observed for nanocomposite justifying the highest current response for the modified electrode. Amperometry and differential pulse voltammetry analyses were applied for all electrochemical measurements and DA detection in the range of 0.5–100 μM. The good adhesion of nanocomposite on the electrode surface, as well as porosity and high surface area of the modified electrode, enhanced the diffusion of DA molecules inside the matrix. Amperometry analysis of the Screen printed carbon electrode/PPy/TA/CTAB modified electrode displayed a good sensitivity of 0.039 μA (μM)−1 toward DA with the limit of detection of 2.9 × 10–7 M. The modified biosensor also excludes the interfering species of ascorbic acid and uric acid which makes this sensor appropriate for DA determination. The proposed biosensor showed an acceptable reproducibility and repeatability with low relative standard deviations of 4.8% and 4.4%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.