Abstract

ABSTRACT: Nonenzymatic browning (NEB) in lactose, trehalose, and lactose/trehalose food model systems containing L-lysine and D-xylose (5% w/w) as reactants was studied at 4 different relative vapor pressure (RVP) (33.2%, 44.1%, 54.5%, 65.6%) environments at room temperature. Sorption isotherms of model systems were determined gravimetrically, and data were modeled using the Brunauer-Emmett-Teller (BET) and Guggenheim-Anderson-deBoer (GAB) models. Glass transition, Tg, was measured by differential scanning calorimetry (DSC). NEB was followed spectrophotometrically. Although the 3 model systems showed similar glass transition behavior, different crystallization properties were observed from loss of sorbed water. Mixtures of trehalose and lactose showed delayed crystallization of component sugars. The NEB rate was affected by sugar composition. At a low RVP (33.1%) environment, the NEB rate in trehalose system was higher than in the lactose/trehalose system, and the NEB rate in lactose system was the lowest. The NEB rate in different models seemed to be affected by component crystallization. The highest extent of browning in the trehalose matrix system seemed to be related to the formation of trehalose crystals in the system after crystallization at high RVP. The results indicated that the composition of the carbohydrate-based low-moisture real food systems should be considered in controlling NEB reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call