Abstract

Biological molecules are predominantly enantioselective. Yet currently two nucleoside analogue prodrugs (3TC and FTC) with opposite chirality compared to physiological nucleosides are clinically approved for the treatment of HIV infections. These prodrugs require conversion to their triphosphorylated forms to achieve pharmacological activity. The first step in the activation of these agents is catalyzed by human deoxycytidine kinase (dCK). This enzyme possesses the ability to phosphorylate nucleosides of the unnatural L-chirality. To understand the molecular basis for the nonenantioselectivity of dCK, we solved the crystal structures of the enzyme in complex with the L-enantiomer and of its physiological substrate deoxycytidine and with the L-nucleoside analogue FTC. These were compared to a structure solved with D-dC. Our results highlight structural adjustments imposed on the L-nucleosides and properties of the enzyme endowing it with the ability to phosphorylate substrates with nonphysiological chirality. This work reveals the molecular basis for the activation of L-nucleosides by dCK.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.