Abstract

This study was undertaken to test the ability of our previous molecular connectivity models to accurately predict the soil sorption coefficients, bioconcentration factors, and acute toxicities in fish of polycyclic aromatic hydrocarbons (PAHs), alkylbenzenes, alkenylbenzenes, chlorobenzenes, polychlorinated biphenyls, chlorinated alkanesand alkenes, heterocyclic and substituted PAHs, and halogenated phenols. Tests performed on large groups of such compounds clearly demonstrate that these simple nonempirical models accurately predict the soil sorption coefficients, bioconcentration factors, and acute toxicities in fish of the above compounds. Moreover, they outperform traditional empirical models based on 1-octanol/ water partition coefficients or watersolubilities in accuracy, speed, and range of applicability. These results show that the molecular connectivity models are a very accurate predictive tool for the soil sorption coefficients, bioconcentration factors, and acute toxicities in fish of a wide range of organic chemicals and that it can be confidently used to rank potentially hazardous chemicals and thus to create a priority testing list.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.