Abstract

AbstractWe investigate here the lowest‐energy (spin‐conserving) excitation energies for the set of He‐Ne atoms, with the family of nonempirical PBE, PBE0, PBE0‐1/3, PBE0‐DH, PBE‐CIDH, PBE‐QIDH, and PBE0‐2 functionals, after employing a wide variety of basis sets systematically approaching the basis set limit: def2‐nVP(D), cc‐pVnZ, aug‐cc‐pVnZ, and d‐aug‐cc‐pVnZ. We find that an accuracy (ie, mean unsigned error) of 0.3 to 0.4 eV for time‐dependent density functional theory (DFT) atomic excitation energies can be robustly achieved with modern double‐hybrid methods, which are also stable with respect to the addition of a double set of diffuse functions, contrarily to hybrid versions, in agreement with recent findings employing sophisticated multiconfigurational DFT methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.