Abstract

The non-dominated sorting genetic algorithm (NSGA-III) was introduced to solve multi-objective optimal reactive power dispatch (MORPD) problems. MORPD as a non-linear, multi-objective optimization problem has the characteristics of non-convex, multi-constraint, and multi-variable (mix of discrete and continuous variables). The aim is to minimize the real power losses and voltage deviations. The feasibility of the proposed method was tested on the IEEE 57-bus power systems. The comparison of simulation results with the previous studies which applied the mixed variables of continuous and discrete showed that the proposed optimization method is more efficient and reliable in minimize the real power losses and computing period compared to multi-objective enhanced particle swarm optimization (MOEPSO), multi-objective particle swarm optimization (MOPSO) and multi-objective ant lion optimization (MOALO).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.