Abstract

We demonstrate the existence of stable nondispersing two-electron wave packets in the helium atom in combined magnetic and circularly polarized microwave fields. These packets follow circular orbits and we show that they can also exist in quantum dots. Classically the two electrons follow trajectories which resemble orbits discovered by Langmuir and which were used in attempts at a Bohr-like quantization of the helium atom. Eigenvalues of a generalized Hessian matrix are computed to investigate the classical stability of these states. Diffusion Monte Carlo simulations demonstrate the quantum stability of these two-electron wave packets in the helium atom and quantum-dot helium with an impurity center.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.