Abstract

Raman measurements on monolayer graphene folded back upon itself as an ordered but skew-stacked bilayer (i.e. with interlayer rotation) presents new mechanism for Raman scattering in sp2 carbons that arises in systems that lack coherent AB interlayer stacking. Although the parent monolayer does not exhibit a D-band, the interior of the skewed bilayer produces a strong two-peak Raman feature near 1350 cm-1; one of these peaks is non-dispersive, unlike all previously observed D-band features in sp2 carbons. Within a double-resonant model of Raman scattering, these unusual features are consistent with a skewed bilayer coupling, wherein one layer imposes a weak but well-ordered perturbation on the other. The discrete Fourier structure of the rotated interlayer interaction potential explains the unusual non-dispersive peak near 1350 cm-1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.