Abstract

The effect of ethanol on chromosomal segregation was investigated in Drosophila melanogaster females homozygous for a structurally normal X chromosome marked with the recessive mutation yellow (y/y). For chronic treatments the females were kept from eclosion in food supplemented with 10% or 15% (v/v) ethanol, mated 24 or 48 h later to wild-type males and brooded in freshly prepared ethanol food. For the acute treatments 24- or 48-h-old females were exposed for 60 min to a 75% (v/v) ethanol solution by means of soaked tissue paper placed at the bottom of regular culture vials and brooded daily after mating. The results obtained show that: (1) both treatments significantly increased the frequency of X-chromosome nondisjunction; (2) after acute treatment this effect declined in later broods; (3) the yield of malformed flies in the progeny of acutely treated females was significantly higher than control values and also declined in later broods; (4) ovary analysis showed that chronic ethanol treatments caused a cessation of egg production. The induction pattern of nondisjunction and malformed flies is interpreted as giving support to the assumption that these effects may result from a direct action of ethanol. Ethanol toxicity was assessed by exposing females of different ages to a 50% or a 75% (v/v) solution for 60 min and counting the surviving flies 24 h later. The surviving fraction decreased steeply from 1-day-old (100%) to 5-day-old females (1.8%). It is suggested that toxicity may have been due to the action of a metabolite of ethanol, probably acetaldehyde.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call